Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMB Rep ; 57(2): 123, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38416114

RESUMO

[Retraction to: BMB Rep. 2022 June 30; 55(6): 299-304.] Retraction: "Inhibition of ClC-5 suppresses proliferation and induces apoptosis in cholangiocarcinoma cells through the Wnt/ß-catenin signaling pathway," by Zhe Shi, Liyuan Zhou, Yan Zhou, Xiaoyan Jia, Xiangjun Yu, Xiaohong An and Yanzhen Han, BMB Rep. 2022; 55(6) 299-304: The above article, published online on 30 June 2022 in BMB Reports https://doi.org/10.5483/ BMBRep.2022.55.6.044), has been retracted by agreement between the authors and the journal's Editor in Chief. The authors unable to replicate certain results presented in the article and have therefore made the difficult decision to withdraw it. Editorial Board, BMB Reports.

2.
Exp Cell Res ; 434(2): 113874, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38070860

RESUMO

The voltage-dependent anion channel 1 (VDAC1) forms an oligomeric structure on the mitochondrial outer membrane, which plays critical roles in many physiological processes. Research studies have demonstrated that the knockout of VDAC1 increases pigment content and up-regulates the expression of melanogenic genes. Due to its involvement in various physiological processes, the depletion of VDAC1 has significant detrimental effects on cellular functions and the inhibition of VDAC1 oligomerization has recently emerged as a promising strategy for the treatment of several diseases. In this study, we found that VDAC1 oligomerization inhibitors, VBIT-12 and NSC-15364, promote melanogenesis, dendrite formation and melanosome transport in human epidermal melanocytes (HEMCs). Mechanistically, treatment of HEMCs with an oligomerization inhibitor increased the level of cytoplasmic calcium ions, which activated calcium-calmodulin dependent protein kinase (CaMK) and led to the phosphorylation of CREB and the nuclear translocation of CREB-regulated transcription coactivators (CRTCs). Subsequently, CRTCs, p-CREB and CREB-binding protein (CBP) in the nucleus cooperatively recruit the transcription machinery to initiate the transcription of MITF thus promoting pigmentation. Importantly, our study also demonstrates that VDAC1 oligomerization inhibitors increase pigmentation in zebrafish and in human skin explants, highlighting their potential as a therapeutic strategy for skin pigmentation disorders.


Assuntos
Transtornos da Pigmentação , Animais , Humanos , Transtornos da Pigmentação/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Cálcio/metabolismo , Peixe-Zebra/metabolismo , Melanócitos , Melaninas/metabolismo , Pigmentação , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Fator de Transcrição Associado à Microftalmia/farmacologia
3.
Cell Death Dis ; 14(11): 756, 2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980402

RESUMO

Kawasaki disease (KD), described as "mucocutaneous lymph node syndrome", affects infants and toddlers. Patients with KD suffer from an inflammatory cascade leading to vasculitis with a predilection for coronary arteries. While the symptoms and pathogenesis of KD have received more and more attention, the precise mechanisms are still debated. Researches show that endothelial dysfunction process in KD leads to arterial damage and affect clinical outcome. In this study, we constructed a Candida albicans water soluble fraction (CAWS)-induced KD murine model and penetrated investigating the mechanisms behind endothelial dysfunction. CAWS-induced mice presented remarkably elevated vascular endothelial cell growth factor (VEGF) levels. Abundant expression of VEGF was documented in all vessels that showed edema from acute KD. It has been reported that Platelet-derived growth factor (PDGF) co-expression normalizes VEGF-induced aberrant angiogenesis. Hyperexpression of PDGFRß was induced in the thickened medial layer and vascular endothelium of KD mice. Masitinib (Mas) is an oral tyrosine kinase inhibitor of numerous targets, which can selectively target PDGFR signaling. We set out to explore whether Mas could regulate coronary pathology in KD. Mas administration significantly reduced the VEGF-induced endothelial cells migration. NOX4 was activated in vascular endothelial cells to produce more ROS. Mitochondrial dysregulated fission and mitophagy caused by DRP-1 overexpression precipitated the arterial endothelial cells injury. Here, mitophagy seemed to work as the driving force of DRP-1/Bak/BNIP3-dependent endothelial cells apoptosis. In summary, how mitophagy is regulated by DRP-1 under pathologic status is critical and complex, which may contribute to the development of specific therapeutic interventions in cardiovascular diseases patients, for example Masatinib, the inhibitor of PDGFRß. FACTS AND QUESTIONS: Kawasaki disease causing systemic vasculitis, affects infants and toddlers. Coronary artery injury remains the major causes of morbidity and mortality. DRP-1 overexpression induces DRP-1/Bak/BNIP3-dependent endothelial cells apoptosis. PDGFRß was high-expressed in the thickened medial layer of CAWS-induced KD mice. Inhibition of PDGFRß signaling alleviates arterial endothelial cells injury.


Assuntos
Síndrome de Linfonodos Mucocutâneos , Lactente , Humanos , Animais , Camundongos , Síndrome de Linfonodos Mucocutâneos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Mitofagia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Apoptose , Mitocôndrias/metabolismo
4.
Clin Lab ; 69(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37560860

RESUMO

The purpose of this study was to investigate the diagnostic value of combined detection of PCT, IL-6, CRP, and WBC in neonatal sepsis. The study selected 50 neonatal sepsis patients treated in Pucheng County Hospital from April 2018 to June 2020 as the patient group, and 50 healthy newborns as the control group. Before treatment, white blood cell count (WBC) was performed on all neonates, and serum PCT, IL-6, and CRP levels were detected by ELISA. After treatment, serum levels of these four biomarkers in the effective/non-effective groups were observed. The results noted higher levels of these four biomarkers in the patient group rather than the control group before treatment, and in the effective group rather than the non-effective group after treatment. ROC analysis found that the area under curve (AUC), specificity and sensitivity of the combined detection were better than those of the single detection. In short, combined detection of these four biomarkers has a high diagnostic value for neonatal sepsis.


Assuntos
Sepse Neonatal , Sepse , Humanos , Recém-Nascido , Sepse Neonatal/diagnóstico , Sepse/diagnóstico , Calcitonina , Peptídeo Relacionado com Gene de Calcitonina , Interleucina-6 , Proteína C-Reativa/análise , Precursores de Proteínas , Biomarcadores , Contagem de Leucócitos , Curva ROC
5.
Eur J Pharmacol ; 932: 175231, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36038012

RESUMO

Pterostilbene is a trans stilbene compound, which is an effective component of herbaceous plants such as Dalbergia woods and Vaccinium. Although pterostilbene has many uses in anti-inflammatory, anti-oxidant and anti-tumor, its whitening effect is drawing more and more attention, the mechanism of melanogenesis and melanosome transport still needs further study. In this research, we tried to further investigate how melanocyte melanogenesis is affected by pterostilbene and whether pterostilbene play a part in melanin transport. Our results showed that pterostilbene has a potent inhibitory effect on melanogenesis in B16F10 cells (3 µM, p < 0.001), in-vitro human skin (10 µM, p < 0.05) and zebrafish embryos (3 µM, p < 0.01). Besides, pterostilbene not only inhibited melanogenesis, but also inhibited melanocyte dendritic development and melanosome transport. Pterostilbene mainly plays a role by inhibiting cAMP/PKA/CREB signal pathway. After the cAMP/PKA/CREB signaling pathway was inhibited, tyrosinase activity and the expression of MITF, TYR, Rab27A, Rab17 and gp100 were decreased, which in turn suppressed melanogenesis, melanocyte dendritic development and melanosome transport. Our findings showed that pterostilbene can potently inhibit melanogenesis and melanosome transport, suggesting the applicability of pterostilbene in skin lightning. Therefore, a novel pharmacologic way to treat hyperpigmentation has been proposed.


Assuntos
Melaninas , Estilbenos , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Humanos , Melanócitos , Melanossomas/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Monofenol Mono-Oxigenase/farmacologia , Estilbenos/farmacologia , Peixe-Zebra/metabolismo
6.
BMB Rep ; 55(6): 299-304, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35651328

RESUMO

Chloride channel-5 (ClC-5), an important branch of the ClC family, is involved in the regulation of the proliferation and cell-fate of a variety of cells, including tumor cells. However, its function in cholangiocarcinoma (CCA) cells remains enigmatic. Here, we discovered that ClC-5 was up-regulated in CCA tissues and CCA cell lines, while ClC-5 silencing inhibited CCA cell proliferation and induced apoptosis. Further mechanism studies revealed that ClC-5 inhibition could inhibit Wnt/ß-catenin signaling activity and further activate the mitochondria apoptotic pathway in CCA cells. Furthermore, rescuing Wnt/ß-catenin signaling activation eliminated the anti-tumor function of ClC-5 knockdown. Together, our research findings illustrated that ClC-5 inhibition plays an anti-tumor role in CCA cells via inhibiting the activity of the Wnt/ß-catenin pathway, which in turn activates the mitochondrial apoptotic pathway. [BMB Reports 2022; 55(6): 299-304].


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Apoptose , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Linhagem Celular Tumoral , Proliferação de Células , Canais de Cloreto/metabolismo , Colangiocarcinoma/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo
7.
Int J Mol Sci ; 23(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35682806

RESUMO

The 5-HT2A serotonin receptor (HTR2A) has been reported to be involved in the serotonin- or serotonin receptor 2A agonist-induced melanogenesis in human melanoma cells. However, the molecular mechanisms underlying HTR2A in regulating melanogenesis remain poorly understood. In this research, cultured mouse melanoma cell line B16F10, human skin, and zebrafish embryos were used to elucidate the downstream signaling of HTR2A in regulating melanogenesis and to verify the potential application of HTR2A in the treatment of pigment-associated cutaneous diseases. We demonstrated that HTR2A antagonists (AT1015 and ketanserin) attenuated the melanogenesis induction of serotonin in both mouse melanoma cells and zebrafish embryos. The agonists of HTR2A (DOI and TCB-2) increased melanin synthesis and transfer in B16F10 cells, human skin tissue, and zebrafish embryos. Furthermore, the HTR2A agonists increased the expression of proteins related to melanosome organization and melanocyte dendrites to facilitate the melanocyte migration and melanosome transport. HTR2A antagonists and genetic knockout of zebrafish htr2aa (the homologue of mammalian HTR2A gene) were also used to clarify that HTR2A mediates serotonin and DOI in regulating melanogenesis. Finally, through small scale screening of the candidate downstream pathway, we demonstrated that HTR2A mediates the melanogenesis induction of its ligands by activating the PKA/CREB signaling pathway. In this research, we further confirmed that HTR2A is a crucial protein to mediate melanocyte function. Meanwhile, this research supports that HTR2A could be designed as a drug target for the development of chemicals to treat cutaneous diseases with melanocytes or melanogenesis abnormality.


Assuntos
Melaninas , Melanoma , Animais , Linhagem Celular Tumoral , Mamíferos/metabolismo , Melaninas/metabolismo , Melanócitos/metabolismo , Melanoma/metabolismo , Camundongos , Serotonina/metabolismo , Serotonina/farmacologia , Transdução de Sinais , Peixe-Zebra/metabolismo
8.
Can J Physiol Pharmacol ; 100(7): 584-593, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35413227

RESUMO

Chemotherapy is one of the most important strategies in the treatment of cancer; however, chemoresistance restricts the effect of chemotherapy. Growing reports suggest that chloride channel-3 (ClC-3) is involved in regulating the sensitivity of multiple chemotherapeutic agents in the chemotherapy of various tumours, while its role in the chemotherapy of cholangiocarcinoma (CCA) is still poorly understood. Herein, we observed that ClC-3 was highly expressed in CCA chemoresistant tissues and CCA cisplatin-resistant cells QBC939/DDP, and the sensitivities of QBC939 and QBC939/DDP cells to cisplatin were all increased after inhibition of ClC-3. Further mechanism exploration revealed that ClC-3 knockdown reduced the level of autophagy. Furthermore, in both QBC939 and QBC939/DDP cells, the autophagy agonist rapamycin eliminated the increased cisplatin sensitivity of ClC-3 knockdown without affecting ClC-3 expression. Collectively, all the findings demonstrate that ClC-3 knockdown increases cisplatin-induced cell death in CCA cells though inhibiting autophagy, regardless of the occurrence of cisplatin resistance. In addition, our results also suggest that targeted inhibition of ClC-3 may be a potential strategy for chemosensitization in CCA chemotherapy.


Assuntos
Antineoplásicos , Neoplasias dos Ductos Biliares , Colangiocarcinoma , Antineoplásicos/farmacologia , Apoptose , Autofagia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Linhagem Celular Tumoral , Canais de Cloreto , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Cisplatino/metabolismo , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Humanos
9.
Front Pharmacol ; 11: 569368, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013408

RESUMO

Protoporphyrin IX (PPIX) is a heterocyclic organic compound that is the last intermediate in the heme biosynthetic pathway. PPIX, due to its photodynamic effects, is utilized in the treatment of skin diseases. Furthermore, PPIX has been utilized as a melanogenesis-stimulating agent in various studies. However, the exact function and mechanism underlying PPIX action in melanocytes remain to be elucidated. In the present study, we sought to further investigate how PPIX affects melanocyte melanogenesis, and whether PPIX is involved in melanin transport. Our findings demonstrated that PPIX increased melanocyte dendricity and melanosome transport, in addition to increasing melanogenesis. PPIX functions primarily by activating the guanylate cyclase (GC) and cyclic guanosine 3', 5'-monophosphate/protein kinase G (cGMP/PKG) signaling pathways. Once activated, these pathways increase tyrosinase activity and the expression of microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 and -2 (TRP-1 and TRP-2), myosin Va, melanophinin, Ras-related protein Rab-27A (Rab27a), and cell division cycle 42 (Cdc42), promoting melanogenesis, melanocyte dendricity, and melanosome transport. Furthermore, the melanogenic effects of PPIX were confirmed in vivo in a zebrafish model system. Our results indicate that PPIX is not cytotoxic and may, thus, be utilized as a pigmentation enhancer.

10.
Bioorg Chem ; 87: 523-533, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30928875

RESUMO

A bioactive component, 2',3,4,4'-tetrahydrochalcone (RY3-a) was first isolated from Vernohia anthelmintica (L.) willd seeds, and a set of its analogs, RY3-a-1-RY3-a-15 and RY3-c were designed and synthesized. Biological activity assays showed that RY3-c exhibited better melanogenesis and antioxidant activity and lower toxicity in comparison with RY3-a and butin. Further study tests showed that RY3-c exhibited better melanogenesis activity compared with the positive control 8-methoxypsoralan (8-MOP) in a vitiligo mouse model, suggesting that RY3-c is a good candidate antivitiligo agent. Mechanistic studies showed that RY3-c could repair cell damage induced by excessive oxidative stress and may exert melanin synthesis activity in the mouse melanoma B16F10 cell line by activating the mitogen-activated protein kinase (MAPK) pathway and the upregulation of c-kit.


Assuntos
Produtos Biológicos/farmacologia , Chalcona/farmacologia , Desenho de Fármacos , Vernonia/química , Vitiligo/tratamento farmacológico , Animais , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Chalcona/análogos & derivados , Chalcona/química , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Relação Estrutura-Atividade , Vitiligo/metabolismo , Vitiligo/patologia , Peixe-Zebra
11.
RSC Adv ; 9(33): 18747-18757, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35516905

RESUMO

Vitiligo is an intriguing depigmentation disorder that affects about 0.5-2% of the world population. In the past decade, first-line treatments of vitiligo have involved the use of calcineurin inhibitors and corticosteroids. Sodium tanshinone IIA sulfonate (STS) has been widely applied in the treatment of cardiovascular and cerebrovascular diseases in China. In the present study, the effect of STS on melanogenesis was confirmed in the B16F10 cells and zebrafish by direct observation. The prevention of hydrogen peroxide (H2O2)-induced oxidative stress has been proven to be beneficial to vitiligo patients, and STS that can protect the B16F10 cells against oxidative stress has been investigated in the present reversed study. Moreover, we found that pre-treatment with STS led to a concentration-dependent mitochondrial impairment and decreased cell apoptosis of the B16F10 cells in response to H2O2. In addition, we demonstrated that STS increased melanin synthesis in the B16F10 cells by activating the mitogen-activated protein kinase (MAPK) and protein kinase A (PKA) pathways. STS also increased the Cdc42 and KIF5b expression to stimulate the translocation of melanin. These results suggest that STS protects the B16F10 cells against H2O2-induced oxidative stress and exerts melanin synthesis activity in the B16F10 cells by activating the MAPK and PKA pathways; thus, it shows therapeutic potential for vitiligo.

12.
Front Pharmacol ; 9: 788, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30079021

RESUMO

Targeting tumor microenvironment (TME) is crucial in order to overcome the anti-cancer therapy resistance. In this study, we report the antitumor activity of a newly synthesized ß-carboline derivative "B-9-3." Here, this small molecule showed a promising antitumor activity in vivo along with an enhanced immune response as reflected by a reduction of regulatory T cells and increased CD4+/CD8+ T cells. Further, B-9-3 decreased the number of myofibroblasts not only in the tumor but also in the lung suggesting an anti-metastatic action. The reduction of myofibroblasts was associated with lower expression of epithelial-to-mesenchymal transition markers and a decrease of phosphorylated SMAD2/3 complex indicating the implication of TGF-ß signaling pathway in B-9-3's effect. The blockade of myofibroblasts induction by B-9-3 was also verified in vitro in human fibroblasts treated with TGF-ß. To elucidate the mechanism of B-9-3's action on TGF-ß pathway, first, we investigated the molecular interaction between B-9-3 and TGF-ß receptors using docking method. Data showed a weak interaction of B-9-3 with the ATP-binding pocket of TGFßRI but a strong one with a ternary complex formed of extracellular domains of TGFßRI, TGFßRII, and TGF-ß. In addition, the role of TGFßRI and TGFßRII in B-9-3's activity was explored in vitro. B-9-3 did not decrease any of the two receptors' protein level and only reduced phosphorylated SMAD2/3 suggesting that its effect was more probably due to its interaction with the ternary complex rather than decreasing the expression of TGF-ß receptors or interfering with their ATP-binding domains. B-9-3 is a small active molecule which acts on the TGF-ß signaling pathway and improves the TME to inhibit the proliferation and the metastasis of the tumor with the potential for clinical application.

13.
FASEB J ; 32(9): 4899-4916, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29613836

RESUMO

Vitiligo is a depigmentary disorder that develops as a result of the progressive disappearance of epidermal melanocytes. Stress can precipitate or exacerbate a skin disease through psychosomatic mechanisms. Stress exposure induces vitiligo-like symptoms in mice, as cellular damage to melanocytes causes synthetic pigment loss. Stress also increases IL-17, IL-1ß, and antimelanocyte IgG in model mouse serum. Up-regulation of the IL-1ß transcript in patients suggests its possible role in autoimmune pathogenesis of vitiligo. We demonstrate that IL-17 promoted IL-1ß secretion from keratinocytes. Mitochondrial dysfunction, which can induce the excessive production of reactive oxygen species (ROS), is emerging as a mechanism that underlies various inflammatory and autoimmune diseases. In this study, we demonstrate that IL-17 inhibits melanogenesis of zebrafish, normal human epidermal melanocytes, and B16F10 cells. IL-17 increased mitochondrial dysfunction and ROS accumulation, which was related to autophagy induction. Autophagy is needed for autophagic apoptosis of B16F10 cells induced by IL-17. To inhibit ROS generation, B16F10 cells were pretreated with N-acetyl-l-cysteine (NAC), which inhibited autophagy. 3-Methyladenine (3-MA) also had an inhibiting effect on autophagy. NAC or 3-MA pretreatments inhibited IL-17-mediated cell apoptosis. In summary, IL-17 induces the cellular stress microenvironment in melanocytes to promote autophagic cell apoptosis in vitiligo.-Zhou, J., An, X., Dong, J., Wang, Y., Zhong, H., Duan, L., Ling, J., Ping, F., Shang, J. IL-17 induces cellular stress microenvironment of melanocytes to promote autophagic cell apoptosis in vitiligo.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Microambiente Celular/efeitos dos fármacos , Interleucina-17/farmacologia , Melanócitos/efeitos dos fármacos , Vitiligo/tratamento farmacológico , Animais , Apoptose/fisiologia , Células Cultivadas , Interleucina-17/metabolismo , Queratinócitos/patologia , Masculino , Melanócitos/patologia , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Vitiligo/metabolismo
14.
Bioorg Med Chem Lett ; 28(5): 910-914, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29433929

RESUMO

Fusion inhibitors of HIV prevent the virus from entering into the target cell via the interaction with gp41, which stops the process of spatial rearrangement of the viral envelope protein. A series of peptides have been designed and screened to obtain a highly potent novel sequence. Among them, CT105 possesses the most potent anti-viral ability at low nanomolar IC50 values against a panel of HIV-1 pseudoviruses from A, B, C and A1/D subtypes, whereas T20 shows much weaker potency. CT105 also shows excellent inhibitory activity at 260 pico molar IC50 against HIV-1 replication. As a fusion inhibitor, CT105 has a strong ability to interrupt gp41 core formation. The terminal half-life of CT105 possesses 1.72-fold longer than that of T20 as determined by developing an indirect competitive ELISA method. The results suggest that this artificial peptide CT105 could be a favorable architype for further optimization and modification.


Assuntos
Fármacos Anti-HIV/farmacologia , Proteína gp41 do Envelope de HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Peptídeos/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Peptídeos/síntese química , Peptídeos/química , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
15.
FASEB J ; 32(6): 3193-3214, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29430989

RESUMO

Substance P (SP) is a candidate mediator along the brain-skin axis and can mimic the effects of stress to regulate melanogenesis. Previously, we and others have found that the regulation of SP for pigmentary function was mediated by neurokinin 1 receptor (NK1R). Emerging evidence has accumulated that psychologic stress can induce dysfunction in the cutaneous serotonin 5-hydroxytryptamine (5-HT)-5-HT1A/1B receptor system, thereby resulting in skin hypopigmentation. Moreover, NK1R and 5-HTR (except 5-HT3) belong to GPCR. The present study aimed at assessing the possible existence of NK1R-5-HTR interactions and related melanogenic functions. Western blot and PCR detection revealed that SP reduced expression of 5-HT1A receptor via the NK1 receptor. Biochemical analyses showed that NK1R and 5-HT1AR could colocalize and interact in a cell and in the skin. When the N terminus of the NK1R protein was removed NK1R surface targeting was prevented, the interaction between NK1R-5-HT1AR decreased, and the depigmentation caused by SP and WAY100635 could be rescued. Importantly, pharmaceutical coadministration of NK1R agonist (SP) and 5-HT1A antagonist (WAY100635) enhanced the NK1-5-HT1A receptor coimmunoprecipitation along with the depigmentary response. SP and WAY100635 cooperation elicited activation of a signaling cascade (the extracellular, regulated protein kinase p-JNK signaling pathway) and inhibition of p70S6K1 phosphorylation and greatly reduced melanin production in vitro and in vivo in mice and zebrafish. Moreover, the SP-induced depigmentation response did not be occur in 5-htr1aa+/- zebrafish embryos. Taken together, the results of our systemic study increases our knowledge of the roles of NK1R and 5-HT1AR in melanogenesis and provides possible, novel therapeutic strategies for treatment of skin hypo/hyperpigmentation.-Wu, H., Zhao, Y., Huang, Q., Cai, M., Pan, Q., Fu, M., An, X., Xia, Z., Liu, M., Jin, Y., He, L., Shang, J. NK1R/5-HT1AR interaction is related to the regulation of melanogenesis.


Assuntos
Melaninas/biossíntese , Receptor 5-HT1A de Serotonina/metabolismo , Receptores da Neurocinina-1/metabolismo , Pigmentação da Pele , Pele/metabolismo , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Melaninas/genética , Camundongos , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Piperazinas/farmacologia , Piridinas/farmacologia , Receptor 5-HT1A de Serotonina/genética , Receptores da Neurocinina-1/genética , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Pele/patologia , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Substância P/metabolismo , Substância P/farmacologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
16.
Metab Brain Dis ; 33(1): 177-190, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29101600

RESUMO

Recent evidence has established that consumption of High-fat diet (HFD)-induced obesity is associated with deficits in hippocampus-dependent memory/learning and mood states. Nevertheless the link between obesity and emotional disorders still remains to be elucidated. This issue is of particular interest during adolescence, which is important period for shaping learning/memory and mood regulation that can be sensitive to the detrimental effects of HFD. Our present study is focused to investigate behavioral and metabolic influences of short-term HFD intake in adolescent C57BL/6 mice. HFD caused weight gain, impaired glucose tolerance (IGT) and depression-like behavior as early as after 3 weeks which was clearly proved by a decrease in number of groomings in the open field test (OFT) and an increase in immobility time in the tail suspension test (TST). In the 4th week HFD induced obese model was fully developed and above behavioral symptoms were more dominant (decrease in number of crossings and groomings and increase in immobility time in both FST and TST). At the end of 6th week hippocampal analysis revealed the differences in morphology (reduced Nissl positive neurons and decreased the 5-HT1A receptor expression), neuronal survival (increased cleaved caspase-3 expression), synaptic plasticity (down regulation of p-CREB and BDNF), and inflammatory responses (increase in expression of pro-inflammatory cytokines and decrease in expression of anti-inflammatory cyokines) in HFD mice. Our results demonstrate that, high-fat feeding of adolescent mice could provoke "depression-like" behavior as early as 3 weeks and modulate structure, neuron survival and neuroinflammation in hippocampus as early as 6 weeks proving that adolescent age is much prone to adverse effects of HFD, which causes obesity, behavioral differences, memory and learning deficiencies.


Assuntos
Comportamento Animal/fisiologia , Dieta Hiperlipídica , Comportamento Exploratório/efeitos dos fármacos , Memória/fisiologia , Obesidade/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos
17.
Oncotarget ; 8(65): 109161-109174, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29312598

RESUMO

Vitiligo is an acquired depigmentary skin inflammatory disorder. The pathogenesis of inflammatory skin disease involves the release of cytokines from keratinocytes, including interleukin (IL)-1ß. IL-22 belongs to a family of cytokines structurally related to IL-10, including IL-19, IL-20, IL-24, and IL-26. In contrast to IL-10, IL-22 has proinflammatory activities. Among skin cell populations only keratinocytes are the major targets of IL-22. In the present study, we demonstrated that IL-22 promoting IL-1ß secretion from keratinocytes via the Reactive oxygen species (ROS)-NOD-like receptor family, pyrin domain containing 3 (NLRP3)-caspase-1 pathway. It inhibited the expression of protease-activated receptor-2 (PAR-2) of keratinocytes. However, IL-22 had no direct effect on normal human foreskin-derived epidermal melanocytes (NHEM). Considering the closely connection between keratinocytes and melanocytes, and the ability of keratinocytes to produce a plethora of cytokines, in the present work, we examined whether IL-22 could regulate melanocytes functions by keratinocytes participation. Keratinocytes were exposed to IL-22 and the conditional medium was collected. The effect of conditional medium on melanocytes was studied. The expressions of relative proteins were assessed by western blot. Influence of conditional medium on NHEM migration was assessed by Transwell method and the apoptosis by flow cytometry analysis. The IL-22-treating keratinocytes conditional medium inhibited melanogenesis and restrained the expressions of Rab GTPases of NHEM. In addition, the conditional medium suppressed melanocytes migration and induced apoptosis. Our results collectively indicated that IL-22 may potentiate IL-1ß-mediated skin inflammation and result in participating in the inflammatory pathogenesis of vitiligo.

18.
Sci Rep ; 5: 15523, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26500137

RESUMO

Phytoliths represent one of the few available altitudinal vegetation proxies for mountain ecosystems. This study analyzed 41 topsoil phytolith samples collected from five altitudinal zones in the southern Himalaya as far as, and beyond, the timberline, from tropical forest (up to 1,000 m a.s.l.) to subtropical forest (1,000-2,000 m a.s.l.), to temperate forest (2,000-3,000 m a.s.l.), to subalpine forest (3,000-4,100 m a.s.l.) and finally to alpine scrub (4,100-5,200 m a.s.l.). The statistical results show a good correlation between phytolith assemblages and these five altitudinal vegetation zones: the five phytolith assemblages identified effectively differentiated these five altitudinal vegetation zones. In particular, coniferous phytoliths accurately indicated the timberline. Additionally, we tested the phytolith index Ic (a proxy for estimating the percentage of Pooideae vis-à-vis the total grass content) as a quantifier of phytolith variety versus altitude. Ic increased along altitude, as expected. An investigation of phytoliths provided an initial basis for the analysis of the composition of gramineous vegetation. Furthermore, redundancy analysis and discriminant analysis also suggested a significant correlation between phytolith assemblages and altitude. Our research therefore provides an up-to-date analogue for the reconstruction of changes to palaeovegetation and palaeoaltitude in mountainous areas.


Assuntos
Altitude , Plantas/classificação , Solo/química , Ásia , Plantas/química
19.
Nano Lett ; 13(3): 909-16, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23350824

RESUMO

We present the photodetection properties of graphene/Si heterojunctions both in the photocurrent and photovoltage modes. Monolayer graphene/Si junctions were found to be excellent weak-signal detectors with photovoltage responsivity exceeding 10(7) V/W and with noise-equivalent-power reaching ∼1 pW/Hz(1/2), potentially capable of distinguishing materials with transmittance, T = 0.9995 in a 0.5 s integration time. In the photocurrent mode, the response was found to remain linear over at least six decades of incident power (P), with tunable responsivity up to 435 mA/W (corresponding to incident photon conversion efficiency (IPCE) > 65%) obtained by layer thickening and doping. With millisecond-scale responses and ON/OFF ratios exceeding 10(4), these photodiodes are highly suitable for tunable and scalable broadband (400 < λ < 900 nm) photodetectors, photometers, and millisecond-response switching, spectroscopic and imaging devices, and further, and are architecturally compatible with on-chip low-power optoelectronics.

20.
ACS Nano ; 5(2): 1003-11, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21229968

RESUMO

We present fabrication and characterization of macroscopic thin films of graphene flakes, which are functionalized with 1-pyrenecarboxylic acid (PCA) and are laminated onto flexible and transparent polydimethylsiloxane (PDMS) membranes. The noncovalently (π-stacked) functionalization of PCA allows us to obtain a number of unique optical and molecular sensing properties that are absent in pristine graphene films, without sacrificing the conducting nature of graphene. The flexible PCA-graphene-PDMS hybrid structure can block 70-95% of ultraviolet (UV) light, while allowing 65% or higher transmittance in the visible region, rendering them potentially useful for a number of flexible UV absorbing/filtering applications. In addition, the electrical resistance of these structures is found to be sensitive to the illumination of visible light, atmospheric pressure change, and the presence of different types of molecular analytes. Owing to their multifunctionality, these hybrid structures have immense potential for the development of versatile, low-cost, flexible, and portable electronic and optoelectronic devices for diverse applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA